13,614 research outputs found

    Effect of depreciation of the public goods in spatial public goods games

    Full text link
    In this work, depreciated effect of the public goods is considered in the public goods games, which is realized by rescaling the multiplication factor r of each group as r' = r(nc/G)^beta (beat>= 0). It is assumed that each individual enjoys the full profit of the public goods if all the players of this group are cooperators, otherwise, the value of the public goods is reduced to r'. It is found that compared with the original version (beta = 0), emergence of cooperation is remarkably promoted for beta > 0, and there exit optimal values of beta inducing the best cooperation. Moreover, the optimal plat of beta broadens as r increases. Furthermore, effect of noise on the evolution of cooperation is studied, it is presented that variation of cooperator density with the noise is dependent of the value of beta and r, and cooperation dominates over most of the range of noise at an intermediate value of beta = 1.0. We study the initial distribution of the multiplication factor at beta = 1.0, and find that all the distributions can be described as Gauss distribution

    Adversarial Convolutional Networks with Weak Domain-Transfer for Multi-sequence Cardiac MR Images Segmentation

    Get PDF
    Analysis and modeling of the ventricles and myocardium are important in the diagnostic and treatment of heart diseases. Manual delineation of those tissues in cardiac MR (CMR) scans is laborious and time-consuming. The ambiguity of the boundaries makes the segmentation task rather challenging. Furthermore, the annotations on some modalities such as Late Gadolinium Enhancement (LGE) MRI, are often not available. We propose an end-to-end segmentation framework based on convolutional neural network (CNN) and adversarial learning. A dilated residual U-shape network is used as a segmentor to generate the prediction mask; meanwhile, a CNN is utilized as a discriminator model to judge the segmentation quality. To leverage the available annotations across modalities per patient, a new loss function named weak domain-transfer loss is introduced to the pipeline. The proposed model is evaluated on the public dataset released by the challenge organizer in MICCAI 2019, which consists of 45 sets of multi-sequence CMR images. We demonstrate that the proposed adversarial pipeline outperforms baseline deep-learning methods.Comment: 9 pages, 4 figures, conferenc

    Comment on ``Relativistic kinetic equations for electromagnetic, scalar and pseudoscalar interactions''

    Get PDF
    It is found that the extra quantum constraints to the spinor components of the equal-time Wigner function given in a recent paper by Zhuang and Heinz should vanish identically. We point out here the origin of the error and give an interpretation of the result. However, the principal idea of obtaining a complete equal-time transport theory by energy averaging the covariant theory remains valid. The classical transport equation for the spin density is also found to be incorrect. We give here the correct form of that equation and discuss briefly its structure.Comment: 5 pages LaTe

    Investigation to direct ethanol injection in spark ignition gasoline engines

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.Ethanol is a promising alternative fuel in terms of addressing future energy and environmental problems. The existing method of using ethanol fuel by blending gasoline and ethanol fuel does not fully exploit ethanol’s advantages. The dual-fuel injection strategy, ethanol direct injection plus gasoline port injection (EDI+GPI), offers a potentially new way to make use of ethanol fuel more effectively and efficiently. The effect of EDI+GPI on engine performance has been experimentally investigated on a 249cc, 4 stroke, air cooled single cylinder engine which was modified by adding an ethanol fuel direct injection system. The research purpose was focused on efficiency improvement (leveraging effect) and emissions reduction. Engine performance at original engine spark timing setting (15 CAD BTDC), knock margin and lean conditions was carried out to assess EDI+GPI’s effectiveness. The impacts of EDI+GPI on engine control parameters, such as start of injection (SOI) timing and spark timing, were also evaluated in order to best match this new fuelling system to conventional SI engines. When the engine was operating at the original engine spark timing setting (15 CAD BTDC), less energy input was required in a SI engine equipped with EDI+GPI to achieve comparable engine power output. Thus, the total fuel consumption could be reduced by leveraging the use of ethanol fuel. At engine speed of 3500rpm, when the ethanol energy ratio (EER) was less than 42.4% at light load and 36.3% at medium load, the EDI+GPI showed a positive impact in relation to combustion with reduced combustion duration and advanced central combustion phasing. However, with further increase of EER, the combustion duration prolonged and central combustion phasing retarded. This may be caused by over cooling due to increased ethanol fuel directly injected. EDI+GPI effectively mitigated engine knock and permitted more advanced spark timing and higher inlet air pressure. At three tested engine loads of indicated mean effective pressure (IMEP), 7.2 Bar, 7.8 Bar and 8.5 Bar, every 2% or 3% increment of EER permitted about 2 CAD advance of knock limited spark advance (KLSA) when the EER was in the range from 15% to 35%. The highest load achieved in this investigation was 10.5 Bar IMEP at inlet (compressed) air pressure of 1.4 Bar. The EER level at this condition was 36.9%. Early ethanol direct injection (EEDI) was more suitable to the EDI+GPI engine since the IMEP in EEDI conditions was greater than that in later ethanol direct injection (LEDI) conditions due to improved volumetric efficiency and combustion. LEDI was less effective on increasing IMEP because its major combustion duration was longer than that in the EEDI condition. In lean burn, EEDI was more effective on extending the lean burn limit than LEDI. The maximum lean burn limit (λ) achieved by EEDI was 1.29. LEDI only slightly increased the lean burn limit which was just over the stoichiometric air-fuel ratio (AFR). When the EER varied, spark timing required corresponding changes to achieve the best efficiency. At IMEP of around 4.0 Bar, spark timing of 25 CAD BTDC resulted in the highest indicated thermal efficiency when the EER was less than 29%, whilst when the EER was greater than 39%, the maximum indicated thermal efficiency was at spark timing of 30 CAD BTDC

    Dams, moats, and cities: climate and societies in late-Holocene China

    Get PDF
    Whilst the late-Holocene climate was becoming drier with an increasing number of climatic anomalies, with notably more frequent fluctuations in summer rainfall on an annual or decadal scale, many walled sites or cities emerged and became regional centres that witnessed population agglomeration and technological flowering. To feed their growing populations and their increasing demands on land, water, food, and other resources, these ‘cities’ were drawn closer physically to riverine environments and wetlands. By diversifying and intensifying their subsistence strategies, and constructing infrastructure on a colossal scale, these late-Holocene walled towns or cities also fundamentally transformed their local landscapes. Examining key sites from the Huai river and the Yangtze Delta, this paper will compare the dynamic interactions between society, landscape, and the environment under different socio-economic conditions across different regions of late-Holocene China and investigate how these factors influenced and led to the emergence of complex societies or early states

    Double-active-layer index-guided InGaAsP-InP laser diode

    Get PDF
    A buried crescent InGaAsP-InP laser with two active layers was fabricated to study the temperature behavior of the double-carrier-confinement structure. An anomalously high characteristic temperature T0 was measured, and optical switching behavior was observed. A mode analysis and numerical calculation using a rate equation approach explained qualitatively very well the experimental results. It was revealed that both the Auger recombination in this special double-active-layer configuration and the temperature-dependent leakage current, which leads to uniform carrier distribution in both active regions, are essential to increase T0
    • 

    corecore